PRODUÇÃO DE SOJA NA REGIÃO NORDESTE PAULISTA, SAFRA 2022/23

FINOTO, Everton Luis¹; **SOARES**, Maria Beatriz Bernardes¹; **BOLONHEZI**, Denizart²; **TREVISOLI**, Sandra Helena Uneda³; **GALLO**, Paulo Boller⁴; **BARROS**, Vera Lúcia Nishijima Paes de⁵; **SÁ**, Luíz Antônio Dias de⁶; **BONATTI**, José Luiz⁶

ISSUE DOI: 10.3738/1982.2278.4141

RESUMO: A escolha inadequada da cultivar em uma determinada região pode comprometer o rendimento de grãos. Assim, é de suma importância ter conhecimento da interação entre os genótipos e o ambiente. Assim, o objetivo deste trabalho foi estudar o desempenho agronômico de diferentes cultivares de soja em locais diferentes dentro da Região Nordeste do Estado de São Paulo na safra 2022/23 visando identificar as mais adequadas ao plantio na Região. Ensaio de competição de cultivares foram instalados em 5 municípios da Região Nordeste do Estado de São Paulo (Jaboticabal, Mococa, Mogi-Mirim, Pirassununga e Ribeirão Preto). Nos cinco locais os experimentos foram instalados no delineamento em blocos casualizados com 3 repetições e conduzidos como recomendado para a cultura, avaliando-se a produtividade de grãos a 13% de umidade. As médias dos resultados foram agrupadas através do teste de Scott-Knott a 5% de probabilidade. De todas a localidades estudadas, Jaboticabal e Pirassununga apresentaram condições mais favoráveis para a produção de soja, com a maior parte das cultivares avaliadas. Na safra 2022/23, as cultivares BS2606, NS6446, TMG 2265, BMX COMPACTA, CZ26B47 e BMX FIBRA se destacaram para a região Nordeste do Estado de São Paulo.

Palavras-chave: Interação genótipo x ambiente, Melhoramento genético. *Glycine max*. Competição de cultivares. Produtividade.

SOYBEAN PRODUCTION IN THE NORTHEAST REGION OF THE STATE OF SÃO PAULO, BRAZIL, 2022/23 SEASON

SUMMARY: The inappropriate choice of cultivar in a given region can compromise grain yield. Thus, it is of paramount importance to be aware of the interaction between genotypes and the environment. Thus, the objective of this work was to study the agronomic performance of different soybean cultivars in different locations within the Northeast Region of the State of São Paulo in the 2022/23 season, in order to identify the most suitable cultivars for planting in the region. Cultivar competition tests were installed in 5 municipalities in the Northeast Region of the State of São Paulo (Jaboticabal, Mococa, Mogi-Mirim, Pirassununga and Ribeirão Preto). In the five locations, the experiments were installed in a randomized block design with 3 replications and conducted as recommended for the crop, evaluating grain yield at 13% moisture. The means of the results were grouped using the Scott-Knott test at 5% probability. Of all the locations studied, Jaboticabal and Pirassununga presented the most favorable conditions for soybean production with most of the evaluated cultivars. In the 2022/23 season, the BS2606, NS6446, TMG 2265, BMX COMPACTA, CZ26B47 and BMX FIBRA cultivars stood out for the Northeast Region of the State of São Paulo.

Keywords: Genotype x environment interaction; Genetical enhancement. *Glycine max*. Cultivar competition. Yield.

⁴ Pesquisador Científico, Me. - IAC - Núcleo Regional de Pesquisa de Mococa, SP;

_

¹ Pesquisador Científico, Dr. - APTA Regional - Unidade Regional de Pesquisa e Desenv. de Pindorama, SP;

² Pesquisador Científico, Dr. - IAC – Centro Avançado de Pesquisa Cana, Ribeirão Preto, SP

³ Professor, Dr. - UNESP - FCAV, Jaboticabal, SP

⁵ Pesquisador Científico, Me. - IAC - Núcleo Regional de Pesquisa de Capão Bonito, SP;

⁶ Assistente Agropecuário - CDRS - CA Mogi-Mirim, SP.

INTRODUÇÃO

No Brasil, a produção de soja vem apresentando grande expansão por ser a *commodity* de maior retorno econômico. O processo, iniciado no final da década de 90, deve continuar em decorrência da grande disponibilidade de terras cultiváveis, a preços competitivos, bem como o desenvolvimento de infraestrutura de produção e escoamento (Freitas, 2022). Até 2029, a produção deverá aumentar 32%, o consumo 22% e as exportações 41%, expandir a área de terra arável é uma das principais opções para aumentar a produção (APROSOJA, 2020).

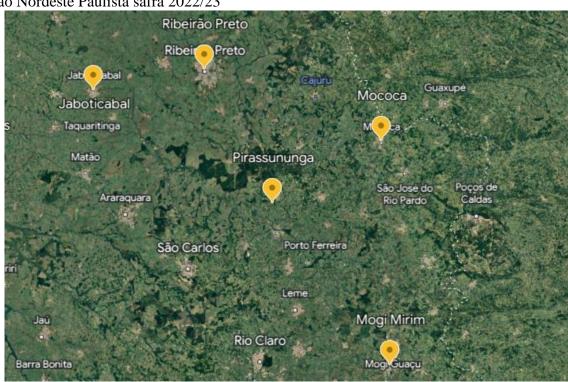
A agricultura brasileira tem uma posição importante no mercado tanto nacional como internacional pois fatores importantes ajudam, dos quais vale destacar condições climáticas (Tubiana *et al.*, 2022). Atualmente a soja se apresenta como principal motor da agricultura brasileira graças a seus elevados encadeamentos (Richards *et al.*, 2015) e pode ser considerada protagonista na agricultura brasileira por diferentes razões: é a cultura que tem o maior espaço territorial dedicado à sua produção, utilizando 48,2% de toda área produzida, e é uma das culturas mais importantes para a geração da renda rural, contribuindo com 52,44% do valor de produção total da agricultura (IBGE, 2021). A safra 2022/23 de soja alcançou 154.603,4 mil de toneladas, 10,9% superior ao antigo recorde de produção, alcançado na safra 2020/21. Esses resultados aconteceram devido às excelentes condições climáticas ocorridas na maioria das regiões produtoras, com exceção do Rio Grande do Sul, e à alta tecnologia empregada pelos produtores. (CONAB, 2023)

Bhuiyan *et al.* (2022) relataram o aumento substancial da demanda por soja e seus produtos derivados em resposta ao aumento da população mundial e às modificações nos padrões alimentares. Para atender a essa demanda, os mesmos autores ressaltam a importância da pesquisa científica na seleção de cultivares cada vez mais adaptados às condições ambientais locais e, por sua vez, mais produtivos (Torres *et al.*, 2014).

Estudos sobre progresso genético realizados em vários países, têm demostrado ganhos expressivos para a cultura da soja, sendo relatados ganhos variando entre 1 a 3,5% na produtividade de grãos (Jin *et al.*, 2010; Rincker *et al.*, 2014; Ramteke *et al.*, 2011; Felipe *et al.*, 2016; Federizzi *et al.*, 2009). Esses resultados demonstram a eficiência dos programas de melhoramento em aumentar a produtividade da cultura.

Avaliações de concorrência de cultivares são de suma relevância para a indicação de denominada área de cultivo, conhecer a resposta de cultivares em distintas regiões em seus particulares microclimas é essencial para a utilização do melhor material genético disponível e como ele se comporta (Gaviraghi *et al.*, 2018).

No Estado de São Paulo, a soja recebe ênfase por exercer um proeminente apoio no avanço dos sistemas de produção do Estado, agindo especialmente na sucessão de culturas e renovação de áreas de cana de açúcar, já que além dos acrescimentos econômicos alcançados por meio da produção de grãos, proporciona uma excelente maneira de abastecimento de nitrogênio para o solo através da fixação biológica de nitrogênio (Bárbaro-Torneli *et al*, 2018).


Cultivares de soja, em sua maioria, apresentam características de alta plasticidade que tem correlação à adequação a altitude, latitude e fertilidade do solo. A escolha inadequada do cultivar quanto ao grupo de maturidade (GM), época de semeadura e distribuição espacial de plantas pode comprometer o rendimento de grãos. Assim, é de suma importância ter conhecimento das interações entre esses quesitos para decidir práticas de manejo que beneficiem o acréscimo de rendimento de grãos da cultura, mesmo que os elementos de produtividade da soja se alterem, também, em função das cultivares escolhidas (Do Carmo *et al.*, 2018).

Dessa forma, o objetivo deste trabalho foi estudar o desempenho agronômico de diferentes cultivares de soja em locais diferentes dentro da Região Nordeste do Estado de São Paulo visando identificar as cultivares mais adequadas ao plantio na região.

MATERIAL E MÉTODO

Local de condução dos experimentos

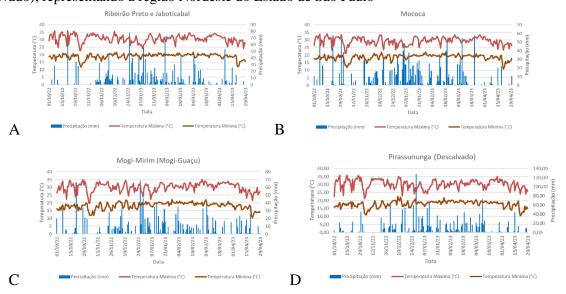

Na safra 2022/23 os ensaios para avaliação do desempenho agronômico de cultivares de soja foram implantados em Unidades da Agência Paulista de Tecnologia dos Agronegócios (APTA), órgão estadual da Secretaria de Agricultura e Abastecimento (SAA) e em propriedades particulares, nos seguintes municípios da região Nordeste do Estado de São Paulo: Jaboticabal, Mococa, Mogi-Mirim, Pirassununga e Ribeirão Preto.

Figura 1. Municípios em que ficaram localizados os ensaios de avaliação de cultivares de soja, na região Nordeste Paulista safra 2022/23

O clima para a região é definido por Koppen (1948) como Aw. Os dados meteorológicos das estações meteorológicas mais próximas de cada local ao longo da execução do experimento, no período 01/10/2022 a 30/04/2023, foram obtidos por meio do Centro Integrado de Informações Agrometeorológicas (CIIAGRO,2023), estão representados a seguir, na Figura 2.

Figura 2. Dados climatológicos das estações meteorológicas mais proximas às áreas de condução dos ensaios nas cidades de Jaboticabal e Ribeirão Preto (estação meteorológica de Ribeirão Preto), Mococa, Mogi-Mirim (estação meteorológica de Mogi-Guaçú) e Pirassununga (estação meteorológica de Descalvado), representando a região Nordeste do Estado de São Paulo

Na Tabela 1 estão apresentadas as características: altitude, região edafoclimática (para soja) e data de plantio de cada local, subvididos em regiões, onde foram instalados os experimentos na safra 2022/23.

Tabela 1. Caracterização dos locais dos experimentos nos municípios paulistas da região nordeste paulista, na safra 2022/2023.

Município	Altitude	Região Edafoclimática	Solo	Data de Plantio
Jaboticabal	605m	302	LEe	22/11/2022
Mococa	645m	203	PVA	19/12/2022
Mogi-Mirim	611m	203	LVA	08/11/2022
Pirassununga	627m	203	LR	24/10/2022
Ribeirão Preto	526m	302	LVe	07/11/2022

Tratamento e delineamento experimental

Utilizou-se o delineamento estatístico de blocos casualizados com três repetições. As parcelas experimentais foram constituídas de quatro linhas de 5,0 m de comprimento, espaçadas de 0,5 m, utilizando para as avaliações agronômicas somente as duas linhas centrais.

No total, foram avaliadas as 33 cultivares de soja, na Região Nordeste do Estado, as cultivares eleitas para participar dos ensaios consistiam nas mais plantadas e/ou com maior potencial de cultivo na região (Tabela 2), das quais apenas 22 cultivares participaram de todos os ensaios.

Tabela 2. Características das cultivares avaliadas nos municípios paulistas da Região Nordeste, na safra 2022/23, e os municípios em que foram plantadas. (**Continua**)

Empress	Cultivar	\mathbf{GMR}^*	Hábito de crescimento	Municípios**				
Empresa Cultivar GMR* Hábito de crescimen		Habito de Crescillento	J	M	MM	P	RP	
Agroeste	AS3599	5.9	Indeterminado	X	X	X	X	X
Agroeste	AS3615	6.1	Indeterminado	X	X	X	X	X
Agroeste	AS3640	6.5	Indeterminado	X	X	X	X	X
Agroeste	AS3700	7.0	Indeterminado	X	X	X	X	X
Agroeste	AS3707	7.0	Indeterminado	X	X	X	X	X
Agroeste	AS3730	7.3	Indeterminado	X	X	X	X	X
Brasmax	BMX COLISEU	6.3	Indeterminado	X	X	X	X	X
Brasmax	BMX COMPACTA	6.5	Indeterminado	X	X	X	X	X
Brasmax	BMX FIBRA	6.3	Indeterminado	X	X	X	X	X
Brasmax	BMX NEXUS	6.4	Indeterminado	X	X	X	X	X
BASF	BS2606	6.0	Indeterminado	X	X	X	X	X

Tabela 2. Características das cultivares avaliadas nos municípios paulistas da Região Nordeste, na safra 2022/23, e os municípios em que foram plantadas. (**Conclusão**)

	23, c os municipios (•	•		Municípios**				
Empresa	Cultivar	GMR*	Hábito de crescimento	J	M	MM	P	RP	
Credenz	CZ26B47	6.4	Indeterminado	X	X	X			
Credenz	CZ26B55	6.5	Indeterminado	X	X	X			
Credenz	CZ37B39	7.3	Indeterminado	X	X	X			
Credenz	CZ37B43	7.4	Indeterminado	X	X	X			
Ellas	ELISA	7.7	Indeterminado	X	X	X			
Seedcorp	HO IGUAÇÚ	6.4	Indeterminado	X	X	X			
Seedcorp	HO PIRAPÓ	6.4	Indeterminado	X	X	X	X	X	
Ellas	LUIZA	7.1	Indeterminado	X					
Monsoy	M5947	5.9	Indeterminado	X	X	X	X	X	
Monsoy	M6100	6.1	Indeterminado	X	X	X	X	X	
Monsoy	M6110	6.1	Indeterminado	X	X	X	X	X	
Monsoy	M6130	6.1	Indeterminado	X	X	X	X	X	
Monsoy	M6210	6.2	Indeterminado	X	X	X	X	X	
Monsoy	M6410	6.4	Indeterminado	X	X	X	X	X	
Monsoy	M6430	6.4	Indeterminado	X	X	X	X	X	
Monsoy	M6620	6.6	Indeterminado	X	X	X	X	X	
Monsoy	M7601	7.6	Indeterminado	X	X	X	X	X	
Nidera	NS6299	6.3	Indeterminado	X	X	X	X		
Nidera	NS6446	6.4	Indeterminado	X	X	X	X		
Nidera	NS6700	7.1	Indeterminado	X	X	X	X	X	
Pioneer	P95R95	5.9	Indeterminado	X	X	X			
TMG	TMG22X65	6.5	Indeterminado		X	X			

*GMR: Grupo de Maturidade Relativa. **Municípios da Região Nordeste: J - Jaboticabal, M - Mococa, MM - Mogi-Mirim, P - Pirassununga, RP - Ribeirão Preto.

Condução do experimento

A adubação e correção de solo foram realizadas, quando necessárias, mediante resultados de análises de solo, com formulação concentrada em fósforo no plantio, adubo 04-30-10 e adubação de cobertura com cloreto de potássio, cerca de 35 a 40 dias após a germinação.

Imediatamente antes da semeadura, as sementes foram submetidas à inoculação com estirpes de *Bradyrhizobium japonicum* e coinoculadas com estirpes de *Azospirillum brasilense* nas doses recomendadas do produto comercial. O controle de plantas invasoras, pragas e doenças foi realizado conforme indicações técnicas aconselhadas para a cultura na região.

Avaliações

Avaliou-se o fator, produtividade de grãos (PG), determinada através da colheita das duas linhas centrais de 5 metros (m), em cada parcela experimental. A umidade dos grãos foi determinada e os dados de produtividade foram corrigidos para 13% de umidade.

Análise estatística dos resultados

Análises de variância individuais de cada local foram devidamente efetuadas e as médias foram agrupadas pelo Teste de Scott-Knott a 5% de probabilidade pelo software Agroestat (Barbosa; Maldonado Junior, 2015). Não foi realizada a análise conjunta dos dados para a região devido a variação das cultivares utilizadas em cada ensaio.

RESULTADO E DISCUSSÃO

Na Tabela 3, encontram-se os resultados médios de produtividade obtidos nos ensaios em municípios da Região Nordeste paulista. Em todos os municípios, as cultivares avaliadas diferiram entre si para produtividade, ressaltando a importância da interação entre genótipo e ambiente mesmo em uma mesma região geográfica, bem como a importância do manejo adotado. A menor média geral de produtividade foi a de Mococa (47,69 sc ha⁻¹) e a maior de Pirassununga (81,66 sc ha⁻¹), levando-se em consideração que a média de produtividade no Estado de São Paulo para da safra 2022/23 foi de 60,97 sc ha⁻¹ (IBGE,2023).

No município de Jaboticabal, cuja classificação edafoclimática para a soja é 302, houve a formação de 6 níveis de produtividade, sua produtividade média foi de 63,28 sc ha⁻¹ cerca de 4% maior que a média paulista, em que se destacaram em produtividade as cultivares NS6446 (78,22 sc ha⁻¹) e CZ26B47 (73,34 sc ha⁻¹); a cultivar M6210 apresentou o pior desempenho com produtividade de 50,85 sc ha⁻¹. De modo geral, 21 das 37 cultivares testadas nesse ambiente apresentaram a produtividade maior que a média do Estado de São Paulo.

Tabela 3. Médias de produtividade (sc ha⁻¹), obtidas de ensaio comparativo de 41 cultivares de soja, conduzido nos municípios de Jaboticabal, Mococa, Mogi-Mirim, Pirassununga e Ribeirão Preto na Região Nordeste do Estado de São Paulo. Safra 2022/23. (**Continua**)

		Produt	tividade (sc ha ⁻	1)	
Cultivar	Jaboticabal	Mococa	Mogi-Mirim	Pirassununga	Ribeirão Preto
AS3707	67,89c	50,93c	70,59a	67,098b	48,02b
AS3599	64,63d	41,20e	56,96d	84,03a	57,05a
AS3615	63,36d	47,69c	56,25d	87,35a	52,49b
AS3640	59,28e	50,03c	58,76c	104,09a	66,66a

Tabela 3. Médias de produtividade (sc ha⁻¹), obtidas de ensaio comparativo de 41 cultivares de soja, conduzido nos municípios de Jaboticabal, Mococa, Mogi-Mirim, Pirassununga e Ribeirão Preto na Região Nordeste do Estado de São Paulo. Safra 2022/23. (**Conclusão**)

Produtividade (sc ha⁻¹)

Cultivar	Jaboticabal	Mococa	Mogi-Mirim	Pirassununga	Ribeirão Preto
AS3700	59,14e	52,31b	59,57c	71,87b	55,30b
AS3730	56,52f	49,38c	63,82b	58,19b	54,25b
BMX COLISEU	60,96e	48,65c	52,92e	92,86a	60,04a
BMX COMPACTA	62,06e	48,07c	64,66b	82,51a	57,05a
BMX FIBRA	63,99d	47,78c	64,11b	94,20a	62,03a
BMX NEXUS	67,53c	48,15c	57,97d	85,92a	59,23a
BS2606	70,29c	44,14d	59,58c	105,00a	57,84a
CZ26B47	73,34b	45,22d	60,81c		
CZ26B55	66,70c	38,27e	65,78b		
CZ37B39	65,11d	54,71b	54,66e		
CZ37B43	66,16d	65,93a	50,04f		
ELISA	63,74d	65,97a	69,39a		
HO IGUAÇÚ	68,14c	45,60d	53,84e		
HO PIRAPÓ	69,27c	51,31c	63,82b	98,97a	59,01a
LUIZA	68,69c				
M5947	61,43e	50,54c	65,36b	89,25a	51,74b
M6100	54,73f	44,68d	56,89d	60,22b	58,20a
M6110	54,88f	34,41e	55,80d	77,46b	49,72b
M6130	60,70e	39,74e	58,41c	73,55b	53,78b
M6210	50,85f	54,78b	59,11c	92,44a	51,18b
M6410	65,63d	39,89e	49,29f	71,14b	49,69b
M6430	55,71f	50,54c	56,51d	71,94b	40,72b
M6620	57,92e	42,98d	57,35d	74,39b	55,32a
M7601	63,19d	36,34e	54,64e	61,47b	65,83a
NS6299	60,55e	39,90e	55,62d	83,45a	
NS6446	78,22a	54,94b	59,80c	90,49a	
NS6700	61,21e	39,89e	57,30d	81,93a	50,50b
P95R95	62,99d	50,23c	57,82d		
TMG 22X65		51,85b	68,39a		
Média geral	63,28	47,69	59,24	81,66	55,26
$\mathbf{F}_{ ext{trat}}$	13,47**	19,18**	29,38**	2,88**	2,65**
$\mathbf{p_{trat}}$	< 0,0001	< 0,0001	< 0,0001	0,0011	0,0035
$\mathbf{F_{bl}}$	6,51**	1,51 ^{ns}	0.01^{ns}	0,14 ^{ns}	1,50 ^{ns}
\mathbf{p}_{bl}	0,0027	0,2294	0,9971	0,8693	0,2358
CV%	4,29	6,05	2,83	16,50	11,50

¹Médias seguidas de mesma letra nas colunas não diferem estatisticamente entre si. * significativo a 5% de probabilidade. ** significativo a 1% de probabilidade. ** significativo.

Para o município de Mococa, cuja classificação edafoclimática para a soja é 203, estando em área limítrofe à produção de soja no Estado de São Paulo, a média de produtividade foi a mais baixa entre as localidades estudadas (47,69 sc ha⁻¹), cerca de 22% menor que a média estadual; houve a formação de 5 níveis de produtividade, significativamente distintos entre si, destacandose as cultivares ELISA, com a produtividade de 65,97 sc ha⁻¹ e CZ37B43, com a produtividade de 65,93 sc ha⁻¹; a cultivar M6110 apresentou o pior desempenho entre as cultivares avaliadas nesse município (34,41 sc ha⁻¹). No ensaio conduzido nesse município apenas 2 das 32 cultivares avaliadas apresentaram desempenho superior à produtividade média paulista.

No município de Mogi-Mirim (classificação edafoclimática 203) foram avaliadas 32 cultivares de soja, das quais apenas 9 apresentaram produtividade média superior à média do Estado. A produtividade média para esse município foi de 59,24 sc ha⁻¹, 3% menor que a média estadual. As cultivares dividiram-se em 6 níveis de produtividade, significativamente distintos entre si em que se destacaram as cultivares AS3707, ELISA e TMG 2265 com produtividades de 70,59, 69,39 e 68,39 sc ha⁻¹, respectivamente. A cultivar M6410 apresentou o pior desempenho com média de produtividade de 49,29 sc ha⁻¹.

No município de Pirassununga (classificação edafoclimática 203) avaliou-se 24 cultivares, das quais 22 apresentaram desempenho superior à média de produtividade paulista. A produtividade média para esse município foi de 81,66 sc ha⁻¹, 34% maior que a média estadual. As cultivares se dividiram em 2 níveis de produtividade, em que o grupo de maior produtividade obteve médias que variaram entre 105,00 sc ha⁻¹ e 81,93 sc ha⁻¹ e era composto pelas variedades BS2606, AS3640, HO PIRAPÓ, BMX FIBRA, BMX COLISEU, M6210, NS6446, M5947, AS3615, BMX NEXUS, AS3599, NS6299, BMX COMPACTA e NS6700. A demais cultivares compuseram o grupo de menor produtividade, cujas médias variaram entre 77,46 sc ha⁻¹ e 58,19 sc ha⁻¹. O pior desempenho foi obtido pela cultivar AS3730.

No município de Ribeirão Preto foram avaliadas 22 cultivares das quais apenas 3 apresentaram desempenho superior à média de produtividade do Estado de São Paulo. As cultivares se estratificaram em 2 níveis de produtividade significativamente distintos entre si, sendo o grupo com as maiores médias de produtividade composto pelas cultivares AS3640 M7601, BMX FIBRA, BMX COLISEU, BMX NEXUS, HO PIRAPÓ, M6100, BS2606, AS3599, BMX COMPACTA e M6620, com produtividades médias que variaram de 66,66 a 55,32 sc ha⁻¹. As demais cultivares apresentaram desempenho significativamente pior, com produtividades que variaram entre 55,30 sc ha⁻¹ e 40,72 sc ha⁻¹.

Em relação às cultivares, de modo geral 13 das 33 cultivares testadas apresentaram desempenho médio entre todos os ensaios inferior à média paulista. As cultivares NS6446,

AS3640, BMX FIBRA, BMX COLISEU, BMX NEXUS, HO PIRAPÓ e ELISA apresentaram um desempenho satisfatório para a Região Noroeste do Estado de São Paulo, obtendo alta produtividade em ao menos dois dos municípios em que os ensaios foram realizados e desempenho intermediário nos demais; as cultivares NS6446 e ELISA apresentaram bom desempenho para a região, porém não foram avaliadas em Ribeirão Preto. As cultivares M6110, M6410, foram as menos produtivas para a região, apresentando na maior parte dos ensaios, os piores desempenhos.

Outras cultivares apresentaram desempenho conflitantes nos diferentes locais de ensaio, como o caso do cultivar AS3707 que apresentou nível de produtividade excelente em Mogi-Mirim, mas baixa produtividade em Pirassununga e Ribeirão Preto. A cultivar AS3640 apresentou comportamento produtivo semelhante, atingindo sua melhor produtividade em Pirassununga (104,09 sc ha⁻¹) e Ribeirão Preto (66,66 sc ha⁻¹) e produtividades inferiores à média do Estado em Jaboticabal, Mococa e Mogi Mirim. Outras cultivares com desempenho conflitante entre as localizações foram M7601, CZ37B43, NS6299, AS3599, M6210, M5947, M6620, AS3615, NS6700, M6100. Tal resultado pode ser explicado pelas condições edafoclimáticas diversas entre os municípios pertencentes a essa região, sobretudo quanto ao clima e à altitude.

CONCLUSÃO

De todas a localidades estudadas Jaboticabal e Pirassununga apresentam condições mais favoráveis para produção de soja da maior parte das cultivares avaliadas, superando em média até 34% a produtividade média paulista;

A maioria das cultivares estudada é agronomicamente adequada ao cultivo na região Nordeste do Estado de São Paulo, com vantagens para os genótipos indicados pelas interações positivas com os locais, podendo favorecer os ganhos aos agricultores.

Na safra 2022/23 as cultivares BS2606, NS6446, TMG 22X65, BMX COMPACTA, CZ26B47 e BMX FIBRA se destacaram pelas altas produtividades na Região Nordeste do Estado de São Paulo enquanto as cultivares CZ26B55, M6410, AS3730 e M6100 se mostraram menos promissoras.

REFERÊNCIAS

APROSOJA. **A soja**. Cuiabá, MT: Aprosoja Brasil, 2020. Disponível em: https://aprosojabrasil.com.br/a-soja/. Acesso em: 22 ago.2023

- BÁRBARO-TORNELI, I. M.; FINOTO, E. L.; TOKUDA, F. S.; SANTOS, G. X. L.; MARTINS, M. H.; CORDEIRO-JUNIOR, P. S.; PASQUETTO, J. V.; GASPARINO, A. C.; BORGES, W. L. B.; FREITAS, R. S. de; MATEUS, G. P.; HIPOLITO, J. L.; CAZENTINI-FILHO, G.; CASTELETI, M. L. Avaliação de cultivares de soja no estado de São Paulo em resposta à aplicação de inoculantes no sulco de semeadura. **Nucleus**. v. 1, p. 55-62, 2018. Disponível em: https://doi.org/10.3738/1982.2278.3001
- BARBOSA, J. C.; MALDONADO JUNIOR, W. **AgroEstat: sistema para análises estatísticas de ensaios agronômicos**. Jaboticabal, FCAV/UNESP, 2015. 396 p.
- BHUIYAN, M. S. H.; MALEK, M. A.; EMON, R. M.; KHATUN, M. K.; KHANDAKER, M. M.; ALAM, M. A. Increased yield performance of mutation induced Soybean genotypes at varied agro-ecological conditions. **Brazilian Journal of Biology**, v. 84, 2022.
- CENTRO INTEGRADO DE INFORMAÇÕES AGROMETEOROLÓGICAS CIIAGRO. Portal **Agrometeorológico e Hidrológico do Estado de São Paulo: Análise Temporal**, 2023. Disponível em: http://www.ciiagro.org.br/atemporal. Acesso em: 22 ago. 2023.
- COMPANHIA NACIONAL DE ABASTECIMENTO, CONAB. **Acompanhamento da Safra Brasileira de Grãos, safra 2022/23**: **Boletim da safra de grãos**, v. 10, n. 11, p. 1-103. 2023. Disponível em: https://www.conab.gov.br/info-agro/safras/graos/boletim-da-safra-de-graos. Acesso em: 25 agosto 2023.
- DO CARMO, E. L.; BRAZ, G. B. P.; SIMON, G. A.; SILVA, A. G. da; ROCHA, A. G. C. Desempenho agronômico da soja cultivada em diferentes épocas e distribuição de plantas. **Revista de Ciências Agroveterinárias**, v. 17, n.1, p. 61-9, 2018.
- FEDERIZZI, L. C.; LANGE, C. E. Estimation of soybean genetic progress in the south of brazil using multienvironmental yield trials. **Scientia Agricola**, v. 66, n. 3, p. 309-316, 2009.
- FELIPE, M. de; GERDE, J; ROTUNDO, J. Soybean genetic gain in maturity groups III to V in Argentina from 1980 to 2015. **Crop Science**, v. 56, n. 6, p. 1-12, 2016. Disponível em: https://doi.org/10.2135/cropsci2016.04.0214
- FREITAS, R. E. Expansão de área agrícola no Brasil segundo as lavouras temporárias. Brasília, DF: IPEA, 2022. 35 p. (IPEA. Texto para discussão, 2796). Disponível em: https://repositorio.ipea.gov.br/handle/11058/11468. Acesso em: 23 agosto 2023.
- GAVIRAGHI, L.; PELLEGRIN, J.; WERNER, A.; BELLÉ, E. P.; BASSO, C. J. Adaptabilidade de cultivares de soja (*Glycine max*) no município de Frederico Westphalen. **Revista Brasileira de Iniciação Científica**, v. 5, n. 6, p. 4-14, 2018.
- INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA IBGE. **Produção Agrícola Municipal** (**PAM**). 2021. Recuperado em 23 de outubro de 2023, de http://www.ibge.gov.br/home/estatistica/indicadores/agropecuaria/lspa/default.shtm
- INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA IBGE. Sidra: **Banco de Tabelas Estatísticas. Levantamento Sistemático da Produção Agrícola,** Disponível em: https://sidra.ibge.gov.br/tabela/6588. Acesso em: 23 agosto 2023.

JIN, J.; LIU, X.; WANG, G.; MI, L.; SHEN, Z.; CHEN, X.; HERBERT, S. J. Agronomic and physiological contributions to the yield improvement of soybean cultivars released from 1950 to 2006 in Northeast China. **Field Crops Research**, v. 115, p. 116-123, 2010.

KOOPEN, W. Climatologia. Buenos Aires: Gráfica Panamericana, 1948. 478 p.

RAMTEKE, R.; GUPTA, G. K.; MURLIDHARAN, P.; SHARMA, S. K. Genetic progress of soybean varieties released during 1969 to 2008 in India. **Indian Journal of Genetics and Plant Breeding**, v. 71, n. 4, p. 333-340, 2011

RICHARDS, P.; PELLEGRINA, H.; VANWEY, L.; SPERA, S. Soybean development: the impact of a decade of agricultural change on urban and economic growth in Mato Grosso, Brazil. **PLoS One**, v.10, n. 4, p. 122-510, 2015.

RINCKER, K. *et al.* Genetic improvement of U.S. soybean in maturity groups II, III, and IV. **Crop Science**, v. 54, n. 4, p. 1419–1432, 2014. Disponível em: https://doi.org/10.2135/cropsci2013.10.0665

SIQUEIRA, T. V. de; SIFFERT FILHO, N. F. Desenvolvimento regional no Brasil: tendências e novas perspectivas. **Revista do BNDES**, v. 6, n. 16, p. 79-118, 2001.

TORRES, F. E.; DAVID, G.V.; TEODORO, P. E.; RIBEIRO, L. P.; CORREA, C.G.; JÚNIOR, R. A. L. Desempenho agronómico e dissimilaridade genética entre genótipos de soja. **Revista de Ciências Agrárias**, v. 38, n. 1, p. 111-117, 2015.

TUBIANA, M.; TRESSI, P. C. de O.; FEITOSA FILHO, L. A. Comparativo de produtividade do cultivar soja safra 2020/21 e 2021/22: estudo de caso. **RECIMA21- Revista Científica Multidisciplinar**, v. 3, n.11, e3112242, 2022. Disponível em: https://doi.org/10.47820/recima21.v3i11.2242